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Introduction 

 

Chronic lymphocytic leukemia (CLL) is a cancer characterized by the uncontrolled proliferation 

and accumulation of B-cell lymphocytes 18. It is the most commonly diagnosed leukemia in the 

Western world 32. In 2017, it is estimated that over 20,000 cases will be diagnosed in the United 

States, comprising of approximately a third of newly diagnosed leukemias 33. Age-adjusted 

incidence rates are especially high for the 65 and older population, at 20.6 per 100,000 34. Such 

elderly patients are also particularly prone to adverse outcomes driven by comorbidity 35. While 

CLL prognosis varies, its beginning is often asymptomatic and insidious 30, 32. Therefore, CLL 

detection is contingent on regular checkups and blood tests, and as such, its epidemiological 

prevalence is likely to be underestimated. While the onset of CLL is gradual, as its name 

suggests, it nevertheless poses economic strain on both the healthcare system and individual 

patients while lowering their qualities of life 31. For these reasons, CLL is an important public 

health consideration with significant social and economic costs.  

While CLL remains non-curative, progress has been made to better manage the disease. Earliest 

breakthroughs in treatment include the use of alkylating agents such as chlorambucil, which 

continues to be used in combination with other therapies 37. Alkylating agents remained the 

standard of care between the 1950s and 1980s, after which fludarabine, a purine nucleoside 

analogue, was introduced in CLL therapy 36. Notable studies determined fludarabine’s advantage 

over chlorambucil with respect to response rates and remission duration, and it soon became a 

mainstay of CLL treatment 38, 39. Immunochemotherapy entered serious therapeutic consideration 

for CLL when rituximab was introduced at the turn of the century. Rituximab targeted CD20 on 

the surface of B-cells and was incorporated into landmark combination therapies with 
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fludarabine and cyclophosphamide 36. These combination therapies have since become some of 

the standard approaches to CLL treatment. More recent findings have established the role of B-

cell receptor (BCR) signaling in CLL survival, migration, and proliferation 40. There are a 

number of clinically relevant BCR kinases in CLL. They include phosphatidylinositide-3-kinase 

(PI3K), Lck/Yes novel tyrosine kinase (LYN), Bruton's tyrosine kinase (BTK), and spleen 

tyrosine kinase (SYK) 41, 42. The inhibitors of kinases involved in BCR signaling pathways, such 

as Ibrutinib and Idelalisib, BTK and PI3K inhibitors respectively, have emerged as especially 

promising therapies 43, 44. At this time, these BCR kinases are the subjects of extensive research 

toward the development of novel therapies.  

The origin of CLL manifestations may be sourced from a variety of gene mutations, but are 

divided into two main subtypes. These are classified by the degree of mutations in the variable 

regions of the heavy chain coding segments of the Ig antibody 19. CLL cells are also identified by 

uncharacteristic ZAP-70 expression, which are typically found in T-cells, contributing to their 

activation 20. In malignant B-cells, it is thought that ZAP-70 contributes to cellular activation on 

a similar axis as antigenic engagement does 21. CLL B-cells can also be recognized by the 

presence of surface markers CD19, CD5, and CD23. There are also reduced levels of surface 

IgM, IgD, and CD79b on CLL B-cells, a state which resembles that of an activated and mature 

B-lymphocyte state 22.  

While the historical view of CLL is that it is caused by an initial apoptotic defect, more recent 

findings contradict this view. It is now understood that initial CLL apoptotic evasion may be a 

result of environmental signals 22. Thus, the disease is exacerbated by survival signals provided 

by stromal cells in protective niches, such as the lymph nodes and bone marrow 2, 3. Under 

typical conditions, these survival signals are necessary for healthy B-cell growth and maturation. 
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On the other hand, in CLL, the environmental signals rescue neoplastic B-cells from apoptosis 

and allow them to thrive 1, 2, 3, 4. Some of these soluble mediators include tumor necrosis factor 

receptor (TNFR) superfamily ligands- clusters of differentiation ligand 40 (CD40L), B-cell 

activating factor (BAFF), and a proliferation-inducing ligand (APRIL). CD40L and 

BAFF/APRIL are ubiquitously secreted in the stromal niches and promote the survival and 

activation of neoplastic clones 2. BAFF/APRIL ligands and their receptors are indispensable in 

B-cell survival 9, 10, 11, 12. BAFF/APRIL share homology and can bind to two TNFRs – B-cell 

maturation antigen (BCMA) and transmembrane activator of the calcium modulator and 

cyclophilin ligand-interactor (TACI), whereas BAFF alone can bind BAFF receptor (BAFF-R, 

BR3) 13.  

Despite progress in understanding the role of BAFF/APRIL signaling in healthy and neoplastic 

B-cells, the role of BAFF-mediated NFκB activation in CLL remains understudied. 

An important mechanism through which the BAFF and APRIL survival factors work is in the 

activation of Bcl-2 family proteins 13. This system contains pro-apoptotic and anti-apoptotic 

proteins that are maintained in a balanced fashion. B-cells transducing survival signals from 

extrinsic factors in their microenvironments encourage the activity of anti-apoptotic proteins of 

the Bcl-2 family, pushing the balance toward survival 23. If the pro-apoptotic proteins Bak and 

Bax are uninhibited to a threshold degree, they oligomerize and permeabilize the mitochondrial 

membrane 23. This initiates the release of caspase-activating factors such as cytochrome c into 

the cytoplasm, which results in the cleavage of cellular proteins and leads to cell death. This 

response, however, is inhibited by the anti-apoptotic proteins, which indicates that the Bcl-2 

family proteins can be harnessed to promote both cell survival and cell death.  
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There are a number of pathways that mediate survival factors expressed by stromal cells and 

apoptosis avoidance through the Bcl-2 protein family. CLL cells in the microenvironments of the 

lymph node, for example, display gene signatures that indicate the activation of the BCR and 

nuclear factor-κB (NFκB) pathways 5. The therapeutic inhibition of BCR-associated kinases has 

significantly impacted CLL outcomes, in part, by causing B-cell migration from niches that 

provided stromal support 6. However, patients who progress on, or are intolerant of BCRi 

therapy, have poor outcomes 7, 8. Improved understanding of microenvironment signaling 

through other pathways will foster development of novel therapeutic approaches in CLL. This 

work focuses on one such pathway, the NFκB signaling pathway. Like other TNFR ligands, 

BAFF/APRIL activate NFκB signaling. This is a major common pathway which mediates anti-

apoptotic responses in CLL cells through induction of Bcl-2 family proteins and chemokine 

networks 13, 14, 15, 16, 17. Both signal through BCMA/TACI to activate the canonical NFκB in CLL, 

where the IκB kinase complex phosphorylates IκB , triggering its ubiquitination and leading to 

nuclear translocation of the NFκB dimers, predominantly p50/RelA and p50/c-Rel 9, 14. This, in 

turn, leads to a survival response.  

BAFF also works through non-canonical NFκB signaling and can be initiated via the BAFF 

receptor, also known as BR3. Its activation mechanism via the BAFF/BR3 interaction will be 

delineated as follows. When BR3 is stimulated by the BAFF ligand, it frees the NF-κB inducing 

kinase (NIK) to phosphorylate the IκB kinase (IKKα). NIK also directly phosphorylates p100 at 

two sites: Ser-866 and Ser-870. IKKα activation via NIK phosphorylates p100 at the Ser-822 site 

24. Once all three serine sites are phosphorylated, p100 is processed into p52, dimerizes with 

RelB, enters the nucleus, and initiates the transcription of pro-survival BCL-2 family proteins 24.  



www.manaraa.com

Of note, there is a particular mechanism by which NIK is activated to initiate phosphorylation of 

IKKα and p100. The non-canonical BAFF signaling pathway is constantly repressed 25. When no 

ligand is attached to the BAFF receptor, NIK is constitutively targeted for ubiquitination and 

then degraded 25. Cellular inducer of apoptosis proteins (cIAPs) 1 and 2 are responsible for the 

ubiquitination of NIK 26. However, cIAP does not perform its function autonomously. It first 

binds to tumor necrosis factor receptor-associated factor 2 (TRAF2), leading to dimerization 

with TRAF3, which is bound to NIK. The association of TRAF3 and NIK is known to be 

essential to NIK degradation 25. The TRAF2 and TRAF3 complex allows cIAP to ubiquitinate 

NIK 26. This constant process prevents NIK from being active.  

Activation of NIK requires that TRAF 3 must be inhibited 26. During BAFF receptor activation, 

the receptor recruits TRAF 3, TRAF 2, and cIAP to its receptor domain 27. At this point, cIAP 

ubiquitinates TRAF 3 and target it for degradation 26. Consequentially, without TRAF 3, NIK 

accumulates until it is energetically favored to phosphorylate IKKα and p100 27. Preliminary 

experiments have suggested that BAFF stimulation has also upregulated the phosphorylation of a 

protein from a different pathway, which aids in cell survival. BAFF stimulation is not only 

working through the non-canonical NFκB pathway, but is likely involved in crosstalk with the 

BCR pathway through SYK. This investigation focuses on the mechanism of this crosstalk. 

Since NIK is activated in response to BAFF stimulation, it is possible that NIK is also inducing a 

BCR response through phosphorylation of SYK. The mechanism of this crosstalk is the subject 

of investigation.  

 

 

 



www.manaraa.com

Methods 

 

Patient samples and cell culture 

Peripheral blood was obtained from patients with CLL at the Center for Hematologic 

Malignancies at the Oregon Health and Science University (Portland, OR) after informed 

consent. Mononuclear cells were isolated using standard Ficoll-Hypaque techniques (Amersham, 

Piscataway, NJ), rendering >90% CD5+/CD19+ cells, as determined by flow cytometry 

(FACSCanto). CLL cells were cultured in RPMI-1640 supplemented with 15% fetal bovine 

serum, 100 U/mL penicillin, 100 μg/mL streptomycin, 2 mM L-glutamine, 25 mM HEPES, 100 

μM non-essential amino acids and 1 mM sodium pyruvate (Life Technologies, Grand Island, 

NY). For stimulation with soluble factors, CLL cells were seeded at 1x106/mL in the presence of 

25 ng/mL soluble human BAFF (sol-BAFF; Cell Signaling Technology, Danvers, MA).   

For stimulation with stroma, BAFF-expressing Chinese hamster ovary cells (BAFF-CHO) were 

obtained from Dr. Robert Woodland (University of Massachusetts, Worcester, MA) 18. The cells 

were maintained in MEM-α supplemented with 10% fetal bovine serum, 100 U/mL penicillin, 

100 μg/mL streptomycin, and 1 μM non-essential amino acids.  CHO-K1 cells not expressing 

BAFF were used as control (American Type Culture Collection [ATCC], Manassas, VA).  

CLL cells were cultured on BAFF-expressing (or control) cells under the stromal conditions 

previously described 17. Briefly, stromal cells were seeded to achieve 80-100% confluence; on 

the following day, CLL cells were plated at a 50:1 ratio and incubated at 370C in 5% CO2. 

Cultures were then treated with drugs as indicated. At harvest, CLL cells were gently washed off 

the stromal layer. When harvested for protein, CLL cells were transferred to a new plate and 

incubated for an additional 60 minutes to allow re-attachment of stromal cells, before the CLL 
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cells were gently washed off and collected. This minimized contamination of CLL cells by the 

adherent BAFF-expressing or control cells.  

 

Immunoblotting and Immunoprecipitation (IP) 

Cells were lysed in radioimmunoprecipitation assay (RIPA) buffer (20 mM Tris, 150 mM NaCl, 

1% NP-40, 1 mM NaF, 1 mM Sodium phosphate, 1 mM NaVO3, 1 mM EDTA, 1 mM EGTA), 

supplemented with protease inhibitor cocktail (Roche, Indianapolis, IN), phosphatase inhibitor 

cocktail 2 and 1 mM phenylmethanesulfonyl fluoride (Sigma-Aldrich).  

For immunoprecipitation experiments, cell protein lysates were pre-cleared and incubated at 4ºC 

overnight with 2 g of the indicated primary antibody or with rabbit IgG as isotype-specific 

control (Santa Cruz Biotechnology, Santa Cruz, CA). Lysates were incubated with 20 μL of 50% 

protein A agarose beads slurry (Cell Signaling) for 3 hours at 4ºC. After washes, samples were 

heated to 95ºC for up to 5 min and analyzed by immunoblotting. 10% of source protein was used 

as input control.  

The following antibodies were used: GAPDH, IKKα, NIK, NFκB2(p100/52), pSYKY352, SYK 

(#2712), SYK (D3Z1E, for IP), TRAF2, TRAF3 (Cell Signaling Technology, Danvers, MA); β-

actin (Sigma-Aldrich). 

 

Cell electroporation 

Raji cells (ATCC) were cultured in RPMI-1640 supplemented with 10% fetal bovine serum, 100 

U/mL penicillin and 100 μg/mL streptomycin. Electroporation of Raji cells was performed using 

the Amaxa Human B-cell Nucleofection Kit (Lonza, Walkersville, MD). 5x106 cells were mixed 

with 100 µL of Amaxa Solution V, and 2 µg of DNA was nucleofected using program O-017. 
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Transfection efficiency, assessed by transfection with 2 µg pMaxGFP plasmid, was 70-90% with 

cell viability of >90% at 24 hours. pCMV4-NIK-HA was a gift from Shao-Cong Sun (Addgene 

plasmid 27554) 21. 

 

Results 

 

 

Figure 1. SYK interacts with NIK/TRAF2/TRAF3 in neoplastic B-cells. (A-B) Raji cells were 

stimulated with 25 ng/mL sol-BAFF for 30 min. Proteins lysates were subjected to 

immunoprecipitation experiments using indicated antibodies as described in the methods. A 

representative blot of three independent experiments is shown. (C) Raji cells were transfected 

with siNIK vs. control siRNA. 48 h later, cells were stimulated with 25 ng/mL sol-BAFF for 30 

min. Whole-cell lysates were subjected to immunoblotting. A representative blot of three 

independent experiments is shown. 
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Figure 2. SYK-TRAF2/3 interaction. (A, C) Raji cells were stimulated with 25 ng/mL sol-

BAFF for 30 min. Proteins lysates were subjected to immunoprecipitation experiments with 

TRAF2 or control antibodies. (B, C) CLL cells were cultured on BAFF-expressing stroma for 24 

h. Protein lysates were immunoprecipitated with SYK or control antibodies. Representative blots 

of three independent experiments are shown. (D) Raji cells were transfected with pCMV-NIK or 

control plasmid. 48 h later, cells were stimulated or not with 25 ng/mL sol-BAFF for 30 min. 

Whole-cell lysates were subjected to immunoblotting. A representative blot of three independent 

experiments is shown. (E) CLL cells were co-cultured with BAFF-expressing stroma for 24 h, 

followed by treatment with IKK inhibitors for 6h. Whole cell protein lysates were subjected to 

immunoblotting. 

 

 

 



www.manaraa.com

Figure 3. BAFF-BCR crosstalk in CLL cells. BAFF-R engagement stabilizes NIK within the 

NIK/TRAF2/TRAF2/cIAP1/2 complex, promoting the non-canonical NFκB pathway activity. 

SYK recruitment to NIK/TRAF2/TRAF3 signaling complex assists BAFF-mediated activation 

of BCR signaling, which contributes to activation of the canonical NFκB. Concurrently, SYK 

induces STAT3 transcription factor, thereby upregulating Mcl-1, a pro-survival Bcl-2 family 

member.  

 

BAFF stimulation induces SYK interaction through the NIK/TRAF2/TRAF3 signaling complex 

Since we found that BAFF promotes CLL cell survival via SYK-mediated upregulation of the 

canonical NFκB and Mcl-1, we studied how BAFF activates SYK. BAFF-R signals through an 

intermediary complex, which involves adaptor proteins TRAF2/TRAF3, NFκB-inducing kinase 

(NIK), and inhibitor of apoptosis (IAP) family proteins cIAP1/2 13. While the exact mechanism 

remains elusive, it is believed that in unstimulated B-cells NIK is constitutively bound to TRAF3 

and degraded. When BAFF-R is engaged, the NIK/TRAF/cIAP complex is recruited to the 

receptor, followed by TRAF3 repression, thus allowing NIK to persist and activate IKK1. IKK1 

catalyzes proteasome-assisted processing of NFκB2 (p100) precursor, thereby inducing the non-

canonical NFκB 13. Since targeting NEDD8 with pevonedistat, which blocks p100 processing 17, 

did not regulate Mcl-1 in BAFF-stimulated CLL cells, we supposed that NIK and/or IKK1 may 

be responsible for BAFF-induced SYK activation. To study this, we evaluated whether SYK 

complexes with NIK/TRAF2/TRAF3 in Raji B-cell lymphoma cell line. Immunoprecipitation of 

cells with SYK monoclonal antibodies showed association of SYK with TRAF3 and TRAF2 in 

BAFF-stimulated Raji cells (Fig. 1A). Moreover, we were able to detect NIK in our SYK 

immunoprecipitates. Conversely, TRAF2 co-immunoprecipitated with both SYK and NIK in 
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Raji cells, while SYK complexed with TRAF2 and TRAF3 in primary CLL cells (Fig. 2A-C). 

We subsequently confirmed SYK binding in the reverse experiments with NIK monoclonal 

antibodies (Fig. 1B). By contrast, SYK did not complex with IKK1 in either Raji or CLL cells 

(Fig. 1A and Fig. 2B-C), strongly suggesting that SYK interacts with submembrane TRAFs in 

neoplastic B-cells.  

As in CLL, BAFF stimulation induced SYK phosphorylation in Raji cells. However, engineered 

expression of NIK failed to enhance SYK activation either in the absence or in the presence of 

BAFF (Fig. 2D). A possible explanation for this is the critical requirement for TRAF2/3 scaffold 

in NIK-SYK interaction: NIK depletion by means of a genetic knockdown did result in reduced 

SYK activation (Fig. 1C). Meanwhile, pharmacologic targeting of IKKs failed to prevent BAFF-

mediated SYK activation (Fig. 2E). 

Thus, BAFF-BCR crosstalk in neoplastic B-cells is at least in part mediated by SYK interaction 

with NIK/TRAF2/TRAF3 complex (Fig. 3).  

 

Discussion 

 

Along with the BCR, many concurrently active pathways ensure survival of the neoplastic B-

cells in the protective niche. Others have previously demonstrated that primary CLL cells co-

cultured with CD40L-expressing stroma activate the canonical and non-canonical NFκB 

pathways, accompanied by upregulation of the pro-survival Bcl-2 family proteins (Bcl-xL), and 

acquire therapeutic resistance, including to BCRi’s 15, 16, 17. BAFF was previously shown to co-

opt BCR signaling in mouse splenic B-lymphocytes, manifested by phosphorylation of the BCR-
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associated CD79A subunit and SYK 28. Here we propose a possible mechanism that facilitates 

this cross-talk in primary human neoplastic B-cells (Fig. 3).  

We observed direct interaction between NIK/TRAF2/TRAF3 complex and SYK in CLL cells, 

potentially implicating those two kinases in BAFF-BCR cross-talk in neoplastic B-cells (Fig. 3). 

However, we have not investigated the role of the BCR structures (CD79A/B) or LYN, a BCR-

associated kinase constitutively active in CLL cells 29, in this setting. Additional experiments 

will be required to decipher the exact contributions of the individual kinases and BCR structural 

components in BAFF-BCR cross-talk in CLL, and will be hampered by the technical challenges 

of eliminating those individual players in primary B-cells. It is conceivable that multiple 

conditions need to be fulfilled, where cooperative action involving an intact BCR structure and 

the SRC family protein kinases is required for NIK-mediated activation of SYK and BCR signal 

propagation.  

Subsequent studies should help elucidate the exact ligand-receptor interactions leading to BCR 

activation in CLL. BAFF and APRIL bind the two TNFR superfamily members - BCMA and 

TACI - with high affinity. It would be important to confirm whether APRIL stimulation could 

replicate some of the BAFF ligand effects. While our data suggest that BAFF-BR3 interaction 

may be necessary for BCR activation via NIK/TRAF2/TRAF3 complex, isolated and concurrent 

blockade of the individual signaling receptors 10 will be necessary to elucidate their importance 

in regulation of NFκB and BCR signaling pathways, as well as response to BCRi in BAFF-

simulated CLL cells. 

Thus, this study illuminates the cross-talk between BAFF and BCR signaling pathways in 

neoplastic B-cells and provides insights into the mechanism of the interaction.   
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